Java在JDK7之后加入了并行计算的框架Fork/Join,可以解决我们系统中大数据计算的性能问题。Fork/Join采用的是分治法,Fork是将一个大任务拆分成若干个子任务,子任务分别去计算,而Join是获取到子任务的计算结果,然后合并,这个是递归的过程。子任务被分配到不同的核上执行时,效率最高。
package com.thread.forkjoin;import java.util.Arrays;import java.util.Random;import java.util.concurrent.ExecutionException;import java.util.concurrent.ForkJoinPool;import java.util.concurrent.RecursiveTask;/** * Java在JDK7之后加入了并行计算的框架Fork/Join,可以解决我们系统中大数据计算的性能问题。 * Fork/Join采用的是分治法,Fork是将一个大任务拆分成若干个子任务,子任务分别去计算,而Join是获取到子任务的计算结果,然后合并,这个是递归的过程。 * 子任务被分配到不同的核上执行时,效率最高。 */public class ForkJoinTest extends RecursiveTask{ private static final int THREADSHOLD = 50000; private long[] array; private int low; private int hight; public ForkJoinTest(long[] array, int low, int hight) { this.array = array; this.low = low; this.hight = hight; } @Override protected Long compute() { long sum = 0; if (hight - low < THREADSHOLD) { for (int i = low; i < hight; i++) { sum += array[i]; } } else { int middle = (low + hight) >>> 1; ForkJoinTest left = new ForkJoinTest(array, low, middle); ForkJoinTest right = new ForkJoinTest(array, middle + 1, hight); left.fork(); right.fork(); sum = left.join() + right.join(); } return sum; } public static void main(String[] args) throws ExecutionException, InterruptedException { long[] array = genArray(1000000); System.out.println(Arrays.toString(array)); ForkJoinTest forkJoinTest = new ForkJoinTest(array, 0, array.length - 1); long begin = System.currentTimeMillis(); ForkJoinPool forkJoinPool = new ForkJoinPool(); forkJoinPool.submit(forkJoinTest); Long result = forkJoinTest.get(); long end = System.currentTimeMillis(); System.out.println(String.format("结果 %s 耗时 %sms", result, end - begin)); } private static long[] genArray(int size) { long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = new Random().nextLong(); } return array; }}